Why voting? A welfare analysis

Moritz Drexl and Andreas Kleiner

August 19, 2015

Moritz Drexl and Andreas Kleiner

Why voting? 1 / 17

Introduction

Textbook example:

A group of privately informed agents decides whether or not to build a bridge.

- Voting is criticized for being inefficient
- The efficient decision rule can be implemented by VCG mechanisms, but not with a balanced budget

Question

Which decision rule maximizes expected welfare of the agents?

Outline

- Literature
- Model
- Results
- Discussion

Literature

Public decision making with monetary transfers

- Efficient decision rule induces budget imbalances (Green and Laffont, 1979)
- Suggestion to use the Pivot mechanism to maximize welfare (Tideman and Tullock, 1976).

Decision making without money

- Optimal voting rules (Rae, 1969; Schmitz and Tröger, 2012)
- Decision rules based on wasteful signaling (Hartline and Roughgarden, 2008; McAfee and McMillan, 1992)

Justification for voting

- Ledyard and Palfrey (2002)
- Bierbrauer and Hellwig (2012)

Model: Set-up

- N agents
- ▶ decide whether to accept (X = 1) or reject (X = 0) a given costless proposal.
- Agent *i* values proposal with θ_i , which is observed privately.
- Utility: $\theta_i X + T_i$
- Type space $\Theta = [\underline{\theta}, \ \overline{\theta}]$, with $\underline{\theta} < 0 < \overline{\theta}$
- Valuations are drawn according to a distribution function F, which admits a strictly positive density f and is symmetric across agents.

Model: Definitions

Definition

▶ A social choice function (scf) is a tuple (x, t) such that

$$egin{aligned} & x:\Theta^{m{N}} o \{0,1\},\ & t:\Theta^{m{N}} o \mathbb{R}^{m{N}}. \end{aligned}$$

- (x, t) is **feasible** if, for all θ , $\sum_i t_i(\theta) \leq 0$.
- (x, t) is **strategy-proof** if truthful reporting is a dominant strategy.
- (x, t) satisfies universal participation if, for all *i* and θ ,

$$\theta_i x(\theta) + t_i(\theta) \geq \theta_i \underline{x}_i(\theta_{-i}).$$

• (x, t) is **anonymous** if, for all θ , $x(\theta) = x(\hat{\pi}(\theta))$.

Model: Objective function

Expected utilitarian welfare under scf (x, t):

$$U(x,t) := \mathbb{E}_{ heta}\left[\sum_{i} heta_i x(heta) + t_i(heta)
ight]$$

Comments:

- Expectation with respect to prior distribution
- Utilitarian welfare, takes payments into account
- Inclusion of payments would not matter if we only imposed ex-ante feasibility or Bayesian incentive compatibility

Results: Characterization of incentive compatibility

Lemma

- A scf (x, t) is strategy-proof if and only if, for each agent *i*,
 - $x(\theta_i, \theta_{-i})$ is nondecreasing in θ_i for all θ_{-i} and
 - **2** there exists a function $h_i(\theta_{-i})$, such that for all θ ,

$$t_i(\theta) = \underbrace{-\theta_i x(\theta) + \int_0^{\theta_i} x(\beta, \theta_{-i}) d\beta}_{0} + \underbrace{h_i(\theta_{-i})}_{0}.$$

Results: Characterization of incentive compatibility

Lemma

- A scf (x, t) is strategy-proof if and only if, for each agent *i*,
 - $x(\theta_i, \theta_{-i})$ is nondecreasing in θ_i for all θ_{-i} and
 - **2** there exists a function $h_i(\theta_{-i})$, such that for all θ ,

$$t_{i}(\theta) = \underbrace{-\theta_{i}x(\theta) + \int_{0}^{\theta_{i}} x(\beta, \theta_{-i})d\beta}_{\text{``incentive payment''}} + \underbrace{h_{i}(\theta_{-i})}_{\text{``redistribution payment''}}$$

Results: Characterization of incentive compatibility

Lemma

- A scf (x, t) is strategy-proof if and only if, for each agent i,
 - $x(\theta_i, \theta_{-i})$ is nondecreasing in θ_i for all θ_{-i} and
 - 2 there exists a function $h_i(\theta_{-i})$, such that for all θ ,

$$t_{i}(\theta) = \underbrace{-\theta_{i}x(\theta) + \int_{0}^{\theta_{i}} x(\beta, \theta_{-i})d\beta}_{\text{``incentive payment''}} + \underbrace{h_{i}(\theta_{-i})}_{\text{``redistribution payment''}}$$

Rewrite objective function:

$$egin{aligned} U(x,t) &= \mathbb{E}_{ heta}\left[\sum_{i} heta_{i}x(heta)+t_{i}(heta)
ight] \ &= \mathbb{E}_{ heta}\left[\sum_{i}\int_{0}^{ heta_{i}}x(eta, heta_{-i})deta+h_{i}(heta_{-i})
ight] \end{aligned}$$

Lemma

Let (x, t) be a feasible and anonymous scf satisfying universal participation. Then $h_i(\theta_{-i}) = 0$ for all *i* and θ_{-i} .

 \Rightarrow incentive payments of non-pivotal agents are O

Definition

Agent *i* is pivotal at profile θ if $x(\theta) \neq x(0, \theta_{-i})$.

- Step 1: For all θ_{-i}, there exists θ_i such that no one is pivotal at (θ_i, θ_{-i}).
 - (a) Either $(0, \theta_{-i})$ satisfies the claim,
 - (b) or $(\theta_{j^*}, \theta_{-i})$, where j^* is the agent sending the highest report.

Definition

Agent *i* is pivotal at profile θ if $x(\theta) \neq x(0, \theta_{-i})$.

- Step 1: For all θ_{-i}, there exists θ_i such that no one is pivotal at (θ_i, θ_{-i}).
 - (a) Either $(0, \theta_{-i})$ satisfies the claim,
 - (b) or $(\theta_{j^*}, \theta_{-i})$, where j^* is the agent sending the highest report.

Definition

Agent *i* is pivotal at profile θ if $x(\theta) \neq x(0, \theta_{-i})$.

- Step 1: For all θ_{-i}, there exists θ_i such that no one is pivotal at (θ_i, θ_{-i}).
 - (a) Either $(0, \theta_{-i})$ satisfies the claim,
 - (b) or $(\theta_{j^*}, \theta_{-i})$, where j^* is the agent sending the highest report.

Agent *i* is pivotal at profile θ if $x(\theta) \neq x(0, \theta_{-i})$.

- Step 1: For all θ_{-i}, there exists θ_i such that no one is pivotal at (θ_i, θ_{-i}).
 - (a) Either $(0, \theta_{-i})$ satisfies the claim,
 - (b) or $(\theta_{j^*}, \theta_{-i})$, where j^* is the agent sending the highest report.
- Step 2: $h_i(\theta_{-i}) = 0$ for all i and θ_{-i} .
 - Participation constraint implies $h_i(\theta_{-i}) \ge 0$.
 - $h_i(\theta_{-i}) > 0$ would contradict feasibility.

Lemma

Let (x, t) be a feasible and anonymous scf satisfying universal participation. Then $h_i(\theta_{-i}) = 0$ for all *i* and θ_{-i} .

Corollary

An anonymous scf is implementable with a balanced budget if and only if it is implementable by qualified majority voting.

Rewrite the objective function:

$$U(x,t) = \int \sum_{i} \left[\theta_{i} x(\theta) + t_{i}(\theta)\right] dF(\theta)$$

Rewrite the objective function:

$$U(x,t) = \int \sum_{i} \left[\theta_{i}x(\theta) + t_{i}(\theta)\right] dF(\theta)$$
$$= \int \sum_{i} \left[\int_{0}^{\theta_{i}} x(\beta, \theta_{-i}) d\beta + h_{i}(\theta_{-i})\right] dF(\theta)$$

Rewrite the objective function:

$$U(x,t) = \int \sum_{i} \left[\theta_{i}x(\theta) + t_{i}(\theta)\right] dF(\theta)$$
$$= \int \sum_{i} \left[\int_{0}^{\theta_{i}} x(\beta, \theta_{-i}) d\beta + h_{i}(\theta_{-i})\right] dF(\theta)$$

Rewrite the objective function:

$$U(x,t) = \int \sum_{i} [\theta_{i}x(\theta) + t_{i}(\theta)] dF(\theta)$$

=
$$\int \sum_{i} \left[\int_{0}^{\theta_{i}} x(\beta, \theta_{-i}) d\beta + h_{i}(\theta_{-i}) \right] dF(\theta)$$

=
$$\int \left[\sum_{i} \psi_{i}(\theta) \right] x(\theta) dF(\theta),$$

where

$$\psi_i(\theta) = \begin{cases} \frac{-F(\theta_i|\theta_{-i})}{f(\theta_i|\theta_{-i})} & \text{if } \theta_i \leq 0, \\ \frac{1-F(\theta_i|\theta_{-i})}{f(\theta_i|\theta_{-i})} & \text{otherwise.} \end{cases}$$

Rewrite the objective function:

$$U(x,t) = \int \sum_{i} [\theta_{i}x(\theta) + t_{i}(\theta)] dF(\theta)$$

=
$$\int \sum_{i} \left[\int_{0}^{\theta_{i}} x(\beta, \theta_{-i}) d\beta + h_{i}(\theta_{-i}) \right] dF(\theta)$$

=
$$\int \left[\sum_{i} \psi_{i}(\theta) \right] x(\theta) dF(\theta),$$

where

$$\psi_i(\theta) = \begin{cases} \frac{-F(\theta_i|\theta_{-i})}{f(\theta_i|\theta_{-i})} & \text{if } \theta_i \leq 0, \\ \frac{1-F(\theta_i|\theta_{-i})}{f(\theta_i|\theta_{-i})} & \text{otherwise.} \end{cases}$$

Proposition

The welfare-maximizing scf maximizes $\mathbb{E}\left[\sum_{i} \psi_{i}(\theta) x(\theta)\right]$ subject to x being pointwise non-decreasing.

Moritz Drexl and Andreas Kleiner

Results: Independent and regular distributions

$$\psi_i(heta) = egin{cases} rac{-F(heta_i)}{f(heta_i)} & ext{if } heta_i \leq 0, \ rac{1-F(heta_i)}{f(heta_i)} & ext{otherwise.} \end{cases}$$

- ▶ With independent types and a standard regularity condition, $\sum_i \psi_i(\theta)$ is decreasing within each orthant.
- IC implies that $x(\theta)$ is increasing in each component.
- Therefore, it is optimal to set $x(\theta)$ constant in this orthant.
- The optimal scf conditions only on the number of agents who are in favor.

Results: Optimality of qualified majority voting

Definition

A scf is called **qualified majority voting** with threshold *m* if $t \equiv 0$ and $x(\theta) = 1$ if and only if $|\{i : \theta_i \ge 0\}| \ge m$.

Proposition

Suppose types are drawn independently, $\frac{f(\cdot)}{1-F(\cdot)}$ is increasing for $\theta_i > 0$ and $\frac{f(\cdot)}{F(\cdot)}$ is decreasing for $\theta_i < 0$.

Then the welfare-maximizing scf does not involve monetary transfers and is implementable by qualified majority voting.

Results: Optimality of qualified majority voting

Definition

A scf is called **qualified majority voting** with threshold *m* if $t \equiv 0$ and $x(\theta) = 1$ if and only if $|\{i : \theta_i \ge 0\}| \ge m$.

Proposition

Suppose types are negatively affiliated, $\frac{f(\cdot|\theta_{-i})}{1-F(\cdot|\theta_{-i})}$ is increasing for $\theta_i > 0$ and $\frac{f(\cdot|\theta_{-i})}{F(\cdot|\theta_{-i})}$ is decreasing for $\theta_i < 0$.

Then the welfare-maximizing scf does not involve monetary transfers and is implementable by qualified majority voting.

Results: Irregular distributions

Proposition

Suppose types are drawn independently. Then the welfare-maximizing scf is such that $x(\theta) = 1$ if and only if $\sum_i \overline{\psi}(\theta_i) \ge 0$ where $\overline{\psi}$ denotes the (Myerson-)ironed ψ .

For dependent types, we do not have an explicit description for the ironing procedure.

Discussion

- Dropping the anonymity requirement allows to implement "sampling Groves schemes"
- Numerical evidence that results could continue to hold without participation constraints.

Moritz Drexl and Andreas Kleiner